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Abstract—This study presents a method for improving signal-
to-noise ratio of single-trial event-related potentials. The method
is based on adaptive linear combiner Hermite model. The choice
of the Hermite basis functions is justified by their resemblance
to the event-related potentials. The variable step-size least-mean
square algorithm is used to estimate and to adjust the parameters
of the filter. The performances of the method are evaluated with
both simulated data and real event-related potential recordings,
and compared with the ensemble average method.
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I. INTRODUCTION

The Event-Related Potentials (ERPs), also called Evoked
Potentials (EP), are brain waves collected at the scalp under
experimental conditions in which the subject has to perform
simple cognitive tasks. These electrical brain activities reflect
the cognitive processes involved in information processing.
ERPs are useful diagnostic tools of both psychiatric and
neurological disorders. Moreover, ERPs, and especially the
P300 component, are widely used in brain computer interfacing
(BCI).

It is difficult to extract the ERP signals from noise for
the several reasons. First, their low amplitudes compared with
the ongoing background electroencephalogram activity (EEG),
second, their non-stationarity and finally the overlap between
the spectrum of the ERP signal and EEG signal. The classical
method usually employed to extract the signal from the noise is
ensemble average (EA). Hundreds of recordings are needed to
reach adequate signal to noise ratio (SNR). But the assumption
that the averaged signal is representative of the individual
ERPs is not necessarily true; changes of shape, amplitude or
latency of the ERPs may occur. Important information about
the variability between single-trials will be lost by averaging,
and it will be impossible to investigate the cognitive process
(e.g. the habituation or the attention of the subject).

In this regard, various methods have been proposed to
denoise the individual ERP signal such as parametric method
[1], the matching pursuit (MP) [2], the Wiener filtering [3],
[4] and the wavelet transform [5], [6], [7], [8]. Most of these
methods need prior information about the temporal and the
spectral characteristics of both the signal and the noise, or
take the average of the signals as template. Adaptive filtering
(AF) was widely exploited in signal enhancement and noise

cancellation [9], [10], [11]. It has the advantage of auto-
adjusting its parameters and requires no a priori knowledge
of signal features. If the SNR is not too low and if the signal
does not present a large variability, the method can obtain a
good estimation. However, the SNR of the ERP signal is low,
so the AF will take longer to converge and may not be able
to track fast changes of the signal. Orthogonal basis functions
were also used to model the ERP signals [12], [13], [14], where
the coefficients of the filter are estimated and adapted using
the Least Mean Square algorithm (LMS) [15].

In the present work, the adaptive Hermite model filter
[16], [17], [18] is used to model individual ERP signals. The
morphology of the Hermite functions looks similar to the
morphology of ERP signal. This similarity allows to extract
the ERP features. We made use of the Variable Step-Size least
Mean Square (VSS-LMS) algorithm [19] to estimate and adjust
the parameters of the model. The VSS-LMS is well suitable for
tracking rapid changes in non-stationary signals like ERPs. We
applied the adaptive Hermite model to both simulated data and
real EEG recordings, and compared it with the conventional
EA method.

II. METHOD

A. Hermite model

ERP can be modeled, with a finite number of parameters,
by the orthogonal Hermite basis functions. These functions are
expressed by:

φi(t, b) =
1√

b.2i.i!
√
π
e−

t2

2b2Hi(t/b) (1)

where φi(t, b) is the Hermite polynomial of order i, and b
is the scale factor that determines the temporal width of the
functions. The Fig. 1a shows the first nine Hermite functions
for b = 30 ms. The ERP can be described as the linear
combination of these basis functions as:

y(t) =
M−1∑

i=0

wiφi(t, b) (2)

where M is the number of the adjustable weights wi.

B. Model structure

The primary input of the filter structure is the noisy ERP
signal, d(k) composed of the underlying ERP signal (s(k))
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and an additive noise (n(k)). The reference inputs are the
Hermite functions φi(k, b). The output of the model, y(k) the
best estimate of the signal s(k), is the linear combination of
the weighted reference inputs. The weights vector W (k) =
[w0w1 . . . wM−1] is updated at each iteration (Fig. 1b).

C. Model parameters

The model coefficients wi and b parameter are estimated
by a variable step-size least mean squares algorithm (VSS-
LMS). The VSS-LMS algorithm minimizes the mean square
error (MSE) between the noisy ERP input signal d(k) and the
output signal of the model (y(k)) by adjusting the weights
vector W . The output of the model is expressed by:

y(k) '
M−1∑

i=0

wi(k)φi(k, b) = WT (k)Φ(k, b) (3)

Where:

W (k) = [w0(k)w1(k) . . . wM−1(k)]

Φ(k, b) = [φ0(k, b)φ1(k, b) . . . φM−1(k, b)]

We can express the error signal as:

e(k) = d(k)− y(k, b) = d(k)−WT (k)φ(k, b) (4)

We express the MSE as:

ξ = E[e2(k)] (5)

The model includes two adaptation processes: the first one to
estimate the coefficients and the second to estimate the opti-
mum width parameter b. In this respect, we have considered
two convergence parameters µ1 and µ2 for the weights vector
and width parameter respectively.

The LMS algorithm used to adjust the weights vector, is
implemented by the recursive expression:

W (k + 1) = W (k) + µ1(k)Φ(k, b)e(k) (6)

e(k) = d(k)− ΦT (k)W (k) (7)

µ′1(k + 1) = αµ1(k) + γe2(k) (8)

µ1(k + 1) =

{
µ1max if µ′1(k + 1) > µ1max

µ1min if µ′1(k + 1) < µ1min

µ′1(k + 1) otherwise.
(9)

where α and γ are positive control parameters with: 0 < α < 1
and γ > 0.

To adapt the parameter b, we use a steepest descent method
[15], [16]:

b(k + 1) = b(k) + 2µ2e(k)

M−1∑

i=0

wi
∂φi(k, b(k))

∂b(k)
(10)

Laguna et al. [16] have proved that:

∂φi(t, b)

∂b
=

1

2b
×

[
−
√
i(i− 1)φi−2(t, b) +

√
(i+ 2)(i+ 1)φi+2(t, b)

]
(11)
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Fig. 1. (a): First nine Hermite functions used as reference inputs to the
adaptive estimator for b = 30ms. (b): Structure of the VSS-LMS adaptive
Hermite model filter, d(k) = primary input signal composed of ERP signal
sequence s(k) plus noise n(k), output signal is y(k), W = the weights of
the filter, b = the scale factor used to generate the Hermite basis functions.
(c): Examples of noise-free signals used for the simulation. (d): Same signals
with different added noises.

The convergence parameter µ2 is controlled by the same type
expressions than µ1 (Eqs.):

µ′2(k + 1) = αµ2(k) + γe2(k) (12)

µ2(k + 1) =

{
µ2max if µ′2(k + 1) > µ2max

µ2min if µ′2(k + 1) < µ2min

µ′2(k + 1) otherwise.
(13)

The initial step-size is usually taken to be µmax. The prediction
error and the two parameters α and γ control the step-size µ.
The parameter α is chosen to provide exponential forgetting.
The parameter γ is chosen conjointly with the parameter α
to meet the misadjustement requirements [19]. The constant
µmax is chosen to ensure that the mean-square error (MSE)
of the algorithm remains bounded. A sufficient condition for
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Fig. 2. The figure (a) compares the MSE after a successive averaging of the
60 trials with the MSE of adaptive Hermite model. The figure (b) compares
the SNR after a successive averaging of the 60 trials with the SNR of adaptive
Hermite model. The dashed lines represent the mean value of the SNR for
each method.

µ1max to guarantee bounded MSE as in [19], [16] is:

µ1max ≤
2

3tr(R)
(14)

where R is the autocorrelation matrix of the input Φ and tr
denotes the trace of the matrix. The minimum step-size µ1min

and µ2min are chosen to provide a minimum level of tracking
ability.

III. SIMULATION

For the simulation, we built sixty synthetic traces of 512
points. Each signal is composed of a set of waves (Fig. 1c).
The temporal window of the primary signal is approximately
600 ms. This temporal window is extended with zero flat
line 400 ms on the right and on the left of window (−0.4
s to 1 s). The latency and the amplitude of the waves are
varied to match the variability of real ERP recordings. The
added EEG noise is generated such that the power spectrum
matches the power spectrum of a human EEG (Fig. 1d). To
generate the EEG noise, we used a MATLAB programme
implemented by Rafal Bogacz and Nick Yeung (Princeton
University, December 2002) [20]. Indeed the SNR of the real
records is very low and has a mean value of approximately
−10 dB.
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Fig. 3. Comparison between the average of sixty signals and the average of
the sixty output signals denoised by the adaptive Hermite model filter.

We choose the order M so that linear combiner represents
more than 95% of the signal power. This corresponds to an
order M = 9 for the adaptive Hermite model. The values
of α and γ that worked well in simulations are respectively
equal to 0.97 and 0.5. For the adaptation step-sizes, the used
values are: µ1min = 10−8, µ1max = 0.05, µ2min = 10−8 and
µ2max = 0.01. The weights vector W is initialized to zero,
µ1 and µ2 are initialized to µ1max and µ2max respectively and
the scale factor b to 30 ms. In order to measure the efficiency
of our model, the adaptive Hermite model and the EA method
were compared by using noisy signals with an SNR equal
to −10 dB. To quantify the results, we used the mean-square
error (MSE) and the SNR enhancement calculated between the
noise-free signals and the noisy signals after denoising by the
VSS-LMS adaptive Hermite Model filter. The SNR is defined
as:

SNR =

Le∑
k=1

s2(k)

Le∑
k=1

(s(k)− y(k))2
(15)

where Le is the number of samples per trial.

In Fig. 2a, we can see that the adaptive Hermite model filter
converges faster than the EA. The MSE of Adaptive Hermite
model filter reaches the steady state after processing about
ten signals. It means that only ten recordings are necessary
to estimate the average with high SNR and consequently
avoid the fatigue of the subject. We can see, in Fig. 2b, that
the improvement of SNR is much important for the Hermite
Model than for the EA method. The mean value of the SNR
improvement is about 16 dB.

The Fig. 3 shows a higher similarity between the average of
the noise-free signals and the average of the individual signals
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Fig. 4. Contour plot: results of the simulated data analysis.

obtained by the adaptive Hermite model than the EA method.
The contour plot in the Fig.4 brings out the similarity between
the noise-free signals and the filtered signals by VSS-LMS
adaptive Hermite model filter and we can clearly notice that
the noise before 0 s and 600 ms was removed.

IV. RECORDINGS AND PREPROCESSING

The EEG data was recorded from 7 electrodes (F3, F4, C2,
P3, P4, O1 and O2) placed conforming to the international
10-20 system, filtered between 0.1 and 70 Hz and sampled at
250 Hz. Two seconds (2 s) of data were stored on hard disc
(256 samples pre-stimulus and 256 samples post-stimulus).
Visual Event-Related Potentials (VERPs) were obtained, from
healthy subject, using oddball paradigm (for more details on
the experiment setup, see [21], [8]).

R
a

w
 d

a
ta

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

−40

−20

0

20

40

E
n

s
e

m
b

le
 A

v
e

ra
g

e

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

−40

−20

0

20

40

Time (ms)

H
e

rm
it
e

 m
o

d
e

l

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

−40

−20

0

20

40

Fig. 5. Contour plot: results of the real data analysis.

V. REAL DATA PROCESSING

The VSS-LMS adaptive Hermite filter was applied to real
EEG recordings. The recording contains thirty (30) signals.
Since the proposed method is for individual channel, only EEG
signals from O1 electrode will be presented. The VSS-LMS
algorithm is used with an order M = 8. For the adaptation
step-sizes, we used µ1min = 10−4, µ1max = 2, µ2min = 10−8

and µ2max = 10−4. We found α = 0.97 and γ = 0.5 to be a
good choice for real data processing. The weights vector W
is initialized to zero, µ1 and µ2 are initialized to µ1max and
µ2max respectively and the scale factor b to 30 ms.

There are three evoked components: the P100 is a positive
peak at about 100 ms followed by the N200 a negative
deflection at 200 ms and the P300 a large late positive peak
at about 400 ms. In Fig. 5, we present the single-trial ERPs
by contour plot before and after denoising using the adaptive
Hermite filter and the EA method. We can observe that both
methods have removed the noise before 0 s, but the P100-
N200 peaks are more recognisable on results of the Hermite
filter and the P300 is less masked by high frequency activity.
We can also see that our method keeps the variability between
trials, which is clearly missed with the EA method.
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VI. DISCUSSION AND CONCLUSION

We proposed a filtering method to enhance the signal-to-
noise ratio of the single-trial ERPs and we showed its applica-
tion to simulated data and real ERPs. For the synthetic traces,
the VSS-LMS adaptive Hermite model filter gave considerably
better estimation of the individual ERPs compared with the
original noisy traces and in comparison with the EA filtered
data even if the SNR is low. We should mention as well that
usually, for high SNRs, the difference between the original data
and denoised data becomes small. In the other hand, filtering
using VSS-LMS adaptive Hermite model of clean ERP signal
gives roughly the same ERP, that is, it does not introduce
significant artifacts in the modelling of the ERPs in contrast
with Wiener filtering which, for higher SNRs, gives significant
errors [8]. The adaptive Hermite model converges to a lower
MSE faster than the EA method. This allows to reduce the
number of recordings needed to reach a satisfactory signal
quality.

Furthermore, the VSS-LMS adaptive Hermite model filter
was applied to real data. The components of the single-trial
ERPs were more recognisable after filtering by the adaptive
Hermite filter. In VERPs, the P100 reflects the response of the
visual cortex, and depends mainly on the physical stimulus.
The P300 is the cognitive component of the ERP that is used
to investigate cognitive functions, and is evoked in the process
of decision-making. This wave depends only on the reaction of
the subject to the stimulus. The P300 is preceded by the N200

wave when the target stimuli are rare among a more common
non-target stimuli, which is the case in the oddball paradigm
adopted for recording the real data used in this study [22],
[23], [24].

The similar morphology of the Hermite functions with the
morphology of ERP signals and the orthogonality of those
functions justify our choice. They allow to model the ERP
signals in a few non-redundant parameters. The VSS-LMS
algorithm is well appropriate to non-stationary signals analysis
as compared with fixed step-size LMS. The VSS-LMS is more
stable because its adaptation step-size parameters are bounded.
The results obtained in simulation and real data confirm that
the adaptive Hermite model filter is more efficient to denoised
the individual ERP signals than the ensemble average method.

REFERENCES

[1] L. Rossi, A. M. Bianchi, A. Merzagora, A. Gaggiani, S. Cerutti, and
F. Bracchi, “Single trial somatosensory evoked potential extraction with
ARX filtering for a combined spinal cord intraoperative neuromonitor-
ing technique.” Biomed. Eng. Online, vol. 6, no. 2, p. 2, Jan. 2007.

[2] M. Jörn, C. Sieluzycki, M. a. Matysiak, J. Zygierewicz, H. Scheich, P. J.
Durka, and R. König, “Single-trial reconstruction of auditory evoked
magnetic fields by means of Template Matching Pursuit,” J. Neurosci.
Methods, vol. 199, no. 1, pp. 119–128, Jul. 2011.

[3] L. Sörnmo and P. Laguna, Bioelectrical Signal Processing in Cardiac
and Neurological Applications. Academic Press, 2005.

[4] S. Sanei and J. A. Chambers, EEG Signal Processing. Wiley-
Interscience, 2007.

[5] M. Ahmadi and R. Quian Quiroga, “Automatic denoising of single-trial
evoked potentials,” Neuroimage, vol. 66, pp. 672–680, Nov. 2013.

[6] M. Benkherrat, F. Vidal, T. Hasbroucq, and B. Burle, “Estimation
of individual evoked potential by wavelet transform,” in Deuxième
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